DE LA SALLE UNIVERSITY – MANILA COLLEGE OF SCIENCE Mathematics Department

SYLLABUS

COURSE CODE

MTH M D

Topic/Subtopic	Learning Strategies/ Activities	Week/Meeting
 2Discrete and Indiscrete Spaces Finite Complement and Countable Complement Topologies 4 Finer and Coarser Topologies Closed and Open Sets 		
 2. The Euclidean Topology 2 The Euclidean Topology on the Real line 2 2The Euclidean Topology in 2 Basis for a Topology 24 Subbasis for a Topology 	Lecture Discussions Problem Solving Use of MS Excel and or Mathematica Wolfram Alpha	Weeks 2
3. Limits Points Limit Points and Closure 2Neighborhoods 2Connectedness and Separability	Lecture Discussions Problem Solving	Weeks 4
Long Test No. 1		Weeks 6
 4. Continuous Functions and Homemorphisms 4. Continuous Functions 4. Continuous Functions 4. 2Intermediate Value Theorem 4. Subspaces 4. Homeomorphisms 	Lecture Discussions Individual Group Reporting	Weeks
5. Separation Axioms T _k and T spaces 2. Mausdorff Spaces T. Spaces	Lecture Discussions Individual Group Reporting	Week
 6. Metric Spaces Metrics and Metric Spaces 2Convergence of Sequences Completeness 4 Baire Spaces 	Lecture Discussions Individual Group Reporting	Weeks 9
Long Test No. 2		Week k
 7. Compactness Open Covers and Subcovers 2Compact Spaces Heine Borel Theorem 4 Local Compactness 	Lecture Discussions Individual Group Reporting	Weeks
 8. Product Topology Finite Products 2Projections Urysohn s Lemma 4 General Products Tychonoff s Theorem 	Lecture Discussions Individual Group Reporting	Week 2
9. Quotient Spaces	Lecture Discussions	Week
FINAL EXAMINATION		Week 4

k k

COURSE REQUIREMENTS

K 2Long TestsK Final Examination

K Problem Sets

SOURCES

BOOKS

- K Willard S General Topology New York, Dover Publications kk4
- K Hun K P Van Mill J and Simon P Recent Progress in General Topology Springer Link k 4

ÓÓ

- K Encyclopedia of General Topology Amstredam, Elsevier North Holland kk4
- K Koshi J D Introduction to General Topology New York, Wiley 9
- K Diximer Jacques General Topology New York. Springer Verlag 9

ONLINE MATERIALS

- K www math ed uk aar papers munkres 2pdf PDF copy of Topology by James Munkres
- K www.topologywithouttears net E book. Morris Sidney Topology Without Tears k 4 edition

Noted by,

DR ISAGANI B JOS Chair Mathematics Department

DR JOSE SANTOS R CARANDANG VI Dean College of Science